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Solutions — Ordinary differential equations

Solution I (MATLAB)

a) The forward Euler method approximates the solution y(t) of equation (1) as:

{un+1:un+hf(tn,un) n=20,...,Np —1,
Uo = Yo-

Since the approximate solution u,1 at the discrete time t,; appears only on the left-hand
side of the first relation, the method is explicit and does not require the solution of any
equations. The MATLAB implementation is straightforward and reads:

function [ tv, uv ] = forward.euler( fun, y0, tO0, tf, Nh )

% FORWARD_EULER Forward Euler method for the scalar ODE in the form
$ y'(t) = £(t,y(t)), t \in (t0,tf)

% y(0) = y-0

% [ tv, uv ] = forward_euler( fun, y0, t0, tf, Nh )

% Inputs: fun = function handle for f(t,y), fun = Q@(t,vy)

% vO = initial value

% t0 = initial time

% tf = final time

% Nh = number of time subintervals

% Output: tv = vector of time steps (1 x (Nh+1))

% uv = vector of approximate solution at times tv

o\

tv = linspace( t0, tf, Nh + 1 );
h = (tf - t0 ) / Nh;

uv = zeros( 1, Nh + 1 );
uv( 1 ) = y0;

for n = 1 : Nh
uv(n + 1 ) =uv(n ) + h * fun( tv( n ), uv( n ) );
end




return

The Heun method is:

{ u'rL+1 = Up + % [f(tnaun) + f(tn+17un + hf(tnaun))] n = 07 .. 'aNh - 17
uo = Yo,

or equivalently:

u;kz+1:un+hf(tn7un) n=0,...,Np,—1,
Un+1 = Un+% [f(tnyun) +f(tn+1au:;+1)] n= Oa" 'aNh - 17
Uo = Yo-

The Heun method is explicit and does not require the solution of any equations; the Heun
method possesses order of accuracy 2 for solutions y(t) € C3(I) (convergence order 2). The
MATLAB implementation follows:

function [ tv, uv ] = heun( fun, y0, t0, tf, Nh )
HEUN Heun method for the scalar ODE in the form

o°

$ y'(t) = £(t,y(t)), t \in (t0,tf)

% y(0) = y-0

% [ tv, uv ] = heun( fun, y0, t0, tf, Nh )

% Inputs: fun = function handle for f(t,y), fun = Q@(t,y)

% v0 = initial value

% t0 = initial time

% tf = final time

% Nh = number of time subintervals

% Output: tv = vector of time steps (1 x (Nh+1l))

% uv = vector of approximate solution at times tv

o

tv = linspace( t0, tf, Nh + 1 );
h = (tf - t0 ) / Nh;

uv = zeros( 1, Nh + 1 );
uv( 1 ) = y0;

for n = 1 : Nh

u.star = uv(n ) + h x fun( tv(n ), uv( n ) );
uww(n+1) =uv(n) +h/ 2 % ( fun( tv(n ), uv( n ) ) +
fun( tv( n + 1 ), u.star ) );
end
return

The following MATLAB commands allow computing the approximated solutions of y(¢) by the
forward Euler and the Heun methods implemented at point a) and to plot them in Fig. 1(left).

yO = (exp( 1) -1) / (exp( 1) +1);
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Figure 1: Numerical approximations of y(t) by the forward Euler and Heun methods for f(t,y) =
1 — 2 (left) and for the model problem (2) with f(t,y) = —y/2 (right).

[ tv, uv_-forward_euler ] = forward.euler( fun, y0, t0, tf, Nh );
[ tv, uv-heun ] = heun( fun, y0, t0, tf, Nh );
tv_plot = linspace( t0, tf, 1001 );
yex = Q@Q(t ) (exp( 2+t +1)—-1) ./ (exp( 2t +1 ) +1);
figure
plot ( tv_plot, y-ex( tv_plot ), '-k', .
tv, uv_forward_euler, '-xb', tv, uv_heun, '-or' );
grid on; xlabel ('t'); ylabel('y');
legend (' y-{ex}(t)'," u-{n}, F.E.'," u_{n}, Heun' );

Qualitatively, the numerical solutions approximate well the exact solution y(t) for Ny = 10.

c) The model problem (2) defined on the interval I = (to,ts) has y(t) = exp(—t/2) as exact
solution. The following MATLAB code computes the numerical approximations of y(t) by the
forward Euler and the Heun methods. See Fig. 1 (right).

lambda = - 0.5;

fun = @( t, y ) lambda x y;

t0 = 0; tf = 15;

yo = 1;

Nh = 10;

[ tv, uv_-forward.euler ] = forward.euler( fun, y0, t0O, tf, Nh );
[ tv, uv_-heun ] = heun( fun, y0, t0, tf, Nh );

tv_plot = linspace( t0, tf, 1001 );
yex = @( t ) yv0O » exp( lambda » t );

figure
plot ( tv-plot, y-ex( tv_plot ), '-k', .

tv, uv_-forward.euler, '-xb', tv, uv_heun, '-or' );
grid on

xlabel ('t");
ylabel ('y');
legend (' y_{ex}(t)'," u-{n}, F.E.','" u_{n}, Heun' );

J

Again, qualitatively, the numerical solutions approximate well the exact solution y(t¢) for
Ny = 10.




The backward Euler method approximates the solution y of equation (1) as:

{ un+1:un+hf<tn+17un+l) n=20,...,Np—1,
uo = Yo-

Since uy 1 appears on both sides of the previous relation, the method is implicit and requires
the solution of the nonlinear equation

FBE (1) = tng1 — tn — h f(tny1, Ung1) =0 foralln =0,..., N, — 1,

at each time step ¢, with n = 0,..., N, — 1. For the model problem (2) this equation is of
the form

FBE (1) = tng1 — tn — Aty =0 foralln=0,..., N, — 1,
whose solution is up4+1 = ﬁ forn=0,...,N,—1.

Thus, the MATLAB implementation reads:

function [ tv, uv ] = backward_euler_modelproblem( lambda, y0, tO, tf, Nh )
BACKWARD_EULER_MODELPROBLEM Backward Euler method for the model problem
ODE in the form

$ y'(t) = lambda y(t), t \in (t0,tf)

% y(0) = y-0

% [ tv, uv ] = backward_euler_modelproblem( lambda, yO0, t0, tf, Nh )
% Inputs: lambda = real parameter (negative)

% yvO0 = initial value

% t0 = initial time

% tf = final time

% Nh = number of time subintervals

% Output: tv = vector of time steps (1 x (Nh+1))

% uv = vector of approximate solution at times tv

tv = linspace( t0, tf, Nh + 1 );
h = (tf - t0 ) / Nh;

uv = zeros( 1, Nh + 1 );

uv( 1 ) = y0;
for n = 1 : Nh
uwwv(n+1) =uv(n) / (1 - h x lambda );
end
return

The Crank-Nicolson method reads:

{ Up41 = Up + % Lf (tn, un) + f(tny1, unt1)] n=0,...,Np—1,
Uo = Yo-

The nonlinear equation to be solved at each time t,, with n =0,..., N, — 1, is

h
FEN(unH) = Ungl — Un — 5 [f (tnyun) + f(tns1,unst1)] =0 foralln=0,...,N, —1,




which, in the case of the model problem (2), simplifies to

FSN(unH) = Unt1 = Un ~ [t + Upt1] =0 foralln=20,...,N, — 1.
The solution is then u,4+1 = % uy for alln =0,..., N, — 1.

We consider the following MATLAB implementation:

function [ tv, uv ] = crank.nicolson.modelproblem( lambda, yO0, t0O, tf, Nh )
CRANK_NICOLSON_MODELPROBLEM Crank-Nicolson method for the model problem
ODE in the form

$ y'(t) = lambda y(t), t \in (tO0,tf)

5 y(0) = y-0

% [ tv, uv ] = crank.nicolson_.modelproblem( lambda, y0, tO, tf, Nh )
% Inputs: lambda = real parameter (negative)

% v0 = initial value

% t0 = initial time

% tf = final time

% Nh = number of time subintervals

% Output: tv = vector of time steps (1 x (Nh+1l))

% uv = vector of approximate solution at times tv

tv = linspace( t0, tf, Nh + 1 );
h = (tf - t0 ) / Nh;

uv = zeros( 1, Nh + 1 );
uv( 1 ) = y0;

alpha = h » lambda / 2;

for n = 1 : Nh
uv(n+ 1) =uv(n) x (1 + alpha ) / (1 - alpha );
end

return

We consider the following MATLAB commands:

[ tv, uv_backward_euler ] backward_euler_modelproblem( lambda,
y0, t0, tf, Nh );
[ tv, uv_crank-nicolson ] = crank.nicolson_modelproblem( lambda,

y0, t0, tf, Nh );

figure
plot ( tv_plot, y-ex( tv_plot ), '-k',
tv, uv_backward.euler, '-dg', tv, uv._.crank.nicolson, '-sm' ) ;
grid on; xlabel ('t'); ylabel('y');
legend (' y-{ex}(t)',"' u-{n}, B.E.'," u_{n}, C.-N.' );

We observe in Fig. 2 that the numerical approximation given by the Crank-Nicolson method
is quite accurate. It is important to understand that even between two methods of the same
order of accuracy (convergence order), such as the Heun and the Crank-Nicolson methods,
which are both accurate of order 2 for y(t) € C3(I), there can be noticeable differences in the
quality of the approximate solutions.
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Figure 2: Numerical approximations of the model problem (2) with f(¢,y) = A y and A = —0.5 by
the backward Euler and Crank-Nicolson methods.

f) If, for a general method, the error e, := |y, — u,| at the discrete time ¢, with n =0,..., N,

is bounded as:
en < Ch? for n=0,..., Ny,

when the time step h is “sufficiently “ small (h — 0), we say that the method is convergent of
order p. Next we shall study the convergence of the four aforementioned methods as h — 0
on the model problem (2) for which y(t) € C*°(I).

Note that, in order to evaluate the errors e, at time ¢ = 10, the number of subintervals
N}, = |I| /h must be chosen such that (f —tg)/h € N. For the values used, this implies that we
must choose Nj, such that 10 N5 /15 € N, and so we choose N, = 15,30, 45, 60, 120, 240, 480.

The MATLAB code to compute the four different approximations for different values of Ny,
and to plot the convergence graph in Fig. 3 is as follows:

errv_.n_forward_euler = [];
errv_n_backward_euler = [];
errv_n_heun = [];
errv_n_crank_nicolson = [];
Nhv = [ 15 30 60 120 240 480 1];
hv = ( tf - t0 ) ./ Nhv;

t_bar = 10;

for Nh = Nhv

h = (tf - t0 ) / Nh; % h
n= ( tbar - t0 ) / h; % step n varies with Nh
[ tv, uv_forward_-euler ] = forward-euler( fun, y0, t0, tf, Nh );
[ tv, uv.heun ] = heun( fun, y0, t0, tf, Nh );
[ tv, uv_backward_euler ] = backward_euler_modelproblem( lambda, ...
y0, t0, tf, Nh );
[ tv, uv_crank_nicolson ] = crank.nicolson_.modelproblem( lambda, ...
y0, t0, tf, Nh );
errv_.n_forward_euler = [ errv.n_forward_euler,
abs( uv_forward.euler( n + 1 ) - y_ex( tbar ) ) 1;
errv_n_heun = [ errv_n_heun,
abs( uvcheun( n + 1 ) - y-ex( t-bar ) ) 1;
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Figure 3: Comparison of the order of convergence of the different methods for the model problem (2).

errv_.n_backward_euler = [ errv_n_backward_euler,
abs ( uv_backward.euler( n + 1 ) - y_ex( t.bar ) ) 1;
errv_n_crank_nicolson = [ errv_n_crank_nicolson,
abs( uv_.crank.nicolson( n + 1 ) - y_ex( t.bar ) ) 1;
end
figure
loglog( hv, errv.n_forward.euler, '-xb',
hv, errv_n_heun, '-or',
hv, errv_n_backward_euler, '-dg',
hv, errv_n_crank_nicolson, '-sm',
hv, 1.5 * errv_n_.backward.euler( 1 ) / hv( 1 ) %= hv, '—-k',...
hv, 1.5 x errv_on.heun( 1 ) / hv( 1 )72 % hv."2, '—-—k' );

grid on; xlabel('h'); ylabel('e.n');
legend(' e_{n}, F.E.',' u_{n}, Heun', ' e {n}, B.E.",' e {n}, C.-N."',
"'h', " h"2'" );
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From the convergence plot in Fig. 3, we verify that the forward Euler and backward Euler
methods converge with order 1. The Heun and Crank-Nicolson methods converge with order
2.

A method for the model problem y'(t) = Ay(t) with A < 0 is called absolutely stable (on
unbounded intervals) for a given A h if the discrete sequence u,, is such that:

lim u, = 0.

n—oo
In general, a linear one-step method applied to the model problem (2) on the unbounded
interval (tg,+00) will produce a sequence in the form u,11 = R(Ah)u, for n > 0, where
the stability function R is a polynomial if the method is explicit or a rational function if the
method is implicit. It follows that u, = R(Ah)™ ug for n > 0. The region of absolute stability

is then defined as:
A:={z=AheC : |R(\h)| <1}.

The stability functions R(Ah) and the conditions for absolute stability of the four methods
considered are:




Method R(A\h) Region of absolute stability (on R™)

2

Forward Euler 1+ Ah 0<h < hpmae = W
1
Backward Euler T unconditional (h > 0)
2

2

Heun 1+)\h+()\g) O<h<hmax:m
1 2

Crank-Nicolson % unconditional (h > 0)

Table 1: Absolute stability regions of different numerical methods.

We apply the four numerical methods to the model problem (2) with A\ = —0.5, t; = 40,
and tgp = 0. We observe that, when N = 9, we have |[A\| h ~ 2.2, when N;, = 10, we have
IA\| h = 2, and, when Nj, = 11, we have |A|h ~ 1.8. Therefore, we expect the two explicit
methods (forward Euler and Heun methods) to be unstable for N;, = 9, marginally but not
absolutely stable for N = 10, and absolutely stable for N, = 11.

This prediction is verified by the left column of Fig. 4. If Nj = 10 the explicit methods are
not absolutely stable, but the approximations remain bounded. For Nj, = 11 both the forward
Euler and Heun methods are absolutely stable, but the forward Euler oscillates greatly and
the approximation is very poor.

From the right column of Fig. 4 we can observe that both the implicit methods (backward Euler
and Crank-Nicolson) are absolutely stable for all the values of Ny, as expected. Nevertheless,
we observe that for h large (N}, small) the approximation given by the Crank-Nicolson method
displays some initial oscillation®.

Exercise II (MATLAB)

a) As mentioned previously (Exercise 1, point d)), the backward Euler method requires the
solution of the nonlinear equation:

F}?E(unﬂ) = Upt1 — Up — hf(tnt1,Uns1) =0 foralln=0,...,N, — 1.

To apply the Newton’s method to its solution, we note that:

(FBEY (U pq) =1 — hg;(tn+17un+1) foralln=0,..., N, —1,

n

and so we can write the Newton method for all n =0,..., Ny — 1 as:
FBE (,,(F)
uglkjll) _ Ug?l _ By k>0,

o (FBEY (u{) )

unJrl = Un,

'This is due to the fact that for the Crank-Nicolson method the stability function R(Ah) satisfies
limx pmoo [R(AR)| = 1. So, if A < 0 or the step size h is very large, the Crank-Nicolson method starts to ex-
hibit some oscillations. The drawback of this method is that it contains insufficient damping for oscillations that may
arise due to the presence of very fast transients in the solutions.
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Figure 4: Left column: behavior of the explicit methods (forward Euler and Heun) for N, = 9
(top), N = 10 (middle), and N = 11 (bottom). Right column: behavior of the implicit methods
(backward Euler and Crank-Nicolson) for Nj, =9 (top), N = 10 (middle), and Nj = 11 (bottom).




using as initial guess the solution u,, at the previous time step. The solution at the discrete
time ¢,,41 is set to up+1 = ugi:rll) for k “sufficiently” large according to some stopping criterion.

Then, the MATLAB implementation of the backward Euler method is:

function [ tv, uv ] = backward.euler( fun, dfun.y, y0, tO0, tf, Nh )
BACKWARD_EULER Backward Euler method for the scalar ODE in the form
y'(t) = £(t,y(t)), t \in (tO0,tf)
y(0) = y-0

The Newton method is used to solve the nonlinear equation at each time
step. The function newton.m is used.

[ tv, uv ] = backward.euler( fun, dfun.y, y0, t0, tf, Nh )
Inputs: fun = function handle for f(t,y), fun = @Q(t,vy)
dfun.y = derivative of f(t,y) w.r.t. y, dfun.y = Q(t,vy)
vO0 = initial value
t0 = initial time
tf = final time
Nh = number of time subintervals
Output: tv = vector of time steps (1 x (Nh+1))
uv = vector of approximate solution at times twv

o0 o° o° o d° O A° A O° A o° o° o J° o° o° oP

tv = linspace( t0, tf, Nh + 1 );
h = (tf - t0 ) / Nh;

uv = zeros( 1, Nh + 1 );
uv( 1 ) = y0;

for n = 1 : Nh

f=0Q@(x) x-—uv(n) —-—h* fun( tv(n + 1), x );
df = @( x ) 1 - h » dfun.y( tv(n + 1), x );
[ xv, res, niter ] = newton( £, df, uv( n ), 1le-10, 20 );
uv(n + 1 ) = xv( end );
end
return

We obtain the results reported in Fig. 5 by using the following MATLAB commands:

alpha = pi/2; Dbeta = pi/3;
fun = @( t, v ) alpha x vy » (1 — 1 / beta vy );
dfun.y = Q( t, y ) alpha = (1 — 2 / beta » y );
t0 = 0; tf = 20; vyO0 = 0.4;

Nh = 20;
[ tv, uv_-forward_euler ] = forward.euler( fun, y0, t0, tf, Nh );
[ tv, uv-backward.-euler ] = backward-euler( fun, dfun.y, y0, t0, tf, Nh );
tv_plot = linspace( t0, tf, 1001 );
y.ex = @( t ) beta x exp( alpha = (t - t0 ) + log( y0O / ( beta - y0 ) ) ) ./
(1 + exp( alpha » (t — t0 ) + log( y0 / ( beta — y0 ) ) ) );
figure
plot ( tv_plot, y.ex( tv_plot ), '-k',
tv, uv_forward.euler, '—-xb',
tv, uv.backward_euler, '-sr' );
grid on; xlabel('t'); vylabel('yv');
legend (' y-{ex}(t)'," u-{n}, F.E.', ' u-{n}, B.E.' );
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It can be seen that both the numerical approximations obtained with the forward and back-
ward Euler methods for N = 20 are (absolutely) stable in the sense that they converge to
the asymptotic limit value, lim; o y(t) = 5 = 7/3; however, the approximation given by the
explicit forward Euler method exhibits some oscillations and is thus a poor approximation of
the exact solution.

Let dfimaz = sup;sy, %(t’ y(t))‘ For the problem under consideration, we know that y(t) €

[yo, ] for t > 0 when 5 > yo > 0. Since %(y) = a(l—%y), Yo = 04, B = §, and

a = 5, we deduce that dfinee = a. It follows that hpee = % ~ 1.2732. Hence, at least

lI| /hmax = 57 &~ 15.7080 subintervals must be used to guarantee absolute stability. The
following MATLAB commands can be considered to obtain the same results:

y = linspace( y0, beta, 1001 );

df val = alpha * (1 - 2 / beta * y );
df _max = max( abs( df_val ) )

% df_max =

% 1.5708

h.max = 2 / df_max

% h_max =

% 1.2732

Nhmax = ceil( ( tf - t0 ) / h_max )
% Nh_max =

% 16

)

In Fig. 6 we display the numerical solutions obtained with the forward and backward Euler
methods for Ny, = 15 (left) and Nj, = 16 (right). It can be seen that in the first case the
approximation given by the forward Euler method is unstable (h > hpae). In the second case
(h < hmag), the solution obtained with the forward Euler method is (absolutely) stable. In

11
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Figure 6: Numerical approximations by the forward and backward Euler methods for ¢y’ =

ay (1—%).

both cases, the approximation given by the explicit forward Euler method oscillates, since,
after all, (absolute) stability is not a guarantee of accuracy. On the other hand, we verify that
the backward Euler method is, as expected, absolutely stable for all Ny, # 1 (h > 0).

The following MATLAB commands can be used to obtain the results in Fig. 6:

Nh = 15; % unstable
[ tv, uv_forward_euler ] = forward._euler( fun, y0, t0, tf, Nh );
[ tv, uv_-backward_euler ] = backward.euler( fun, dfun.y, y0, t0, tf, Nh );
tv_plot = linspace( t0, tf, 1001 );
y.ex = @( t ) beta x exp( alpha = (t - t0 ) + log( y0 / ( beta - y0 ) ) ) ./
(1 + exp( alpha = (t - t0 ) + log( y0O / ( beta - y0 ) ) ) );
figure
plot ( tv_plot, y.ex( tv_plot ), '-k',
tv, uv_forward_.euler, '—-xb',
tv, uv_.backward._euler, '-sr' );
grid on; xlabel ('t"); ylabel ('yv');
legend (' y-{ex}(t)'," u-{n}, F.E.', " u_{n}, B.E.' );
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