
Numerical Analysis and Computational Mathematics

Fall Semester 2024 – CSE Section

Prof. Laura Grigori

Assistant: Israa Fakih

Session 12 – December 4, 2024

Solutions – Ordinary differential equations

Solution I (MATLAB)

a) The forward Euler method approximates the solution y(t) of equation (1) as:{
un+1 = un + h f(tn, un) n = 0, . . . , Nh − 1,
u0 = y0.

Since the approximate solution un+1 at the discrete time tn+1 appears only on the left-hand
side of the first relation, the method is explicit and does not require the solution of any
equations. The MATLAB implementation is straightforward and reads:

�
function [tv, uv] = forward euler(fun, y0, t0, tf, Nh)
% FORWARD EULER Forward Euler method for the scalar ODE in the form
% y'(t) = f(t,y(t)), t \in (t0,tf)
% y(0) = y 0
%
% [tv, uv] = forward euler(fun, y0, t0, tf, Nh)
% Inputs: fun = function handle for f(t,y), fun = @(t,y) ...
% y0 = initial value
% t0 = initial time
% tf = final time
% Nh = number of time subintervals
% Output: tv = vector of time steps (1 x (Nh+1))
% uv = vector of approximate solution at times tv
%

tv = linspace(t0, tf, Nh + 1);
h = (tf − t0) / Nh;

uv = zeros(1, Nh + 1);
uv(1) = y0;

for n = 1 : Nh
uv(n + 1) = uv(n) + h * fun(tv(n), uv(n));

end

1

return� �
The Heun method is:{

un+1 = un + h
2 [f(tn, un) + f(tn+1, un + hf(tn, un))] n = 0, . . . , Nh − 1,

u0 = y0,

or equivalently:
u∗n+1 = un + hf(tn, un) n = 0, . . . , Nh − 1,

un+1 = un + h
2

[
f(tn, un) + f(tn+1, u

∗
n+1)

]
n = 0, . . . , Nh − 1,

u0 = y0.

The Heun method is explicit and does not require the solution of any equations; the Heun
method possesses order of accuracy 2 for solutions y(t) ∈ C3(I) (convergence order 2). The
MATLAB implementation follows:

�
function [tv, uv] = heun(fun, y0, t0, tf, Nh)
% HEUN Heun method for the scalar ODE in the form
% y'(t) = f(t,y(t)), t \in (t0,tf)
% y(0) = y 0
%
% [tv, uv] = heun(fun, y0, t0, tf, Nh)
% Inputs: fun = function handle for f(t,y), fun = @(t,y) ...
% y0 = initial value
% t0 = initial time
% tf = final time
% Nh = number of time subintervals
% Output: tv = vector of time steps (1 x (Nh+1))
% uv = vector of approximate solution at times tv
%

tv = linspace(t0, tf, Nh + 1);
h = (tf − t0) / Nh;

uv = zeros(1, Nh + 1);
uv(1) = y0;

for n = 1 : Nh
u star = uv(n) + h * fun(tv(n), uv(n));
uv(n + 1) = uv(n) + h / 2 * (fun(tv(n), uv(n)) + ...

fun(tv(n + 1), u star));
end

return� �
b) The following MATLAB commands allow computing the approximated solutions of y(t) by the

forward Euler and the Heun methods implemented at point a) and to plot them in Fig. 1(left).

�
fun = @(t, y) 1 − y.ˆ2;
t0 = 0; tf = 5;
y0 = (exp(1) − 1) / (exp(1) + 1);
Nh = 10;

2

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

t

y

Cauchy problem, Forward Euler and Heun methods

 y
ex

(t)

 u
n
, F.E.

 u
n
, Heun

0 5 10 15

0

0.2

0.4

0.6

0.8

1

t

y

Model problem, Forward Euler and Heun methods

 y

ex
(t)

 u
n
, F.E.

 u
n
, Heun

Figure 1: Numerical approximations of y(t) by the forward Euler and Heun methods for f(t, y) =
1− y2 (left) and for the model problem (2) with f(t, y) = −y/2 (right).

[tv, uv forward euler] = forward euler(fun, y0, t0, tf, Nh);
[tv, uv heun] = heun(fun, y0, t0, tf, Nh);
tv plot = linspace(t0, tf, 1001);
y ex = @(t) (exp(2 * t + 1) − 1) ./ (exp(2 * t + 1) + 1);
figure
plot(tv plot, y ex(tv plot), '−k', ...

tv, uv forward euler, '−xb', tv, uv heun, '−or');
grid on; xlabel('t'); ylabel('y');
legend(' y {ex}(t)',' u {n}, F.E.',' u {n}, Heun');� �
Qualitatively, the numerical solutions approximate well the exact solution y(t) for Nh = 10.

c) The model problem (2) defined on the interval I = (t0, tf) has y(t) = exp(−t/2) as exact
solution. The following MATLAB code computes the numerical approximations of y(t) by the
forward Euler and the Heun methods. See Fig. 1 (right).

�
lambda = − 0.5;
fun = @(t, y) lambda * y;
t0 = 0; tf = 15;
y0 = 1;
Nh = 10;
[tv, uv forward euler] = forward euler(fun, y0, t0, tf, Nh);
[tv, uv heun] = heun(fun, y0, t0, tf, Nh);
tv plot = linspace(t0, tf, 1001);
y ex = @(t) y0 * exp(lambda * t);
figure
plot(tv plot, y ex(tv plot), '−k', ...

tv, uv forward euler, '−xb', tv, uv heun, '−or');
grid on
xlabel('t');
ylabel('y');
legend(' y {ex}(t)',' u {n}, F.E.',' u {n}, Heun');� �
Again, qualitatively, the numerical solutions approximate well the exact solution y(t) for
Nh = 10.

3

d) The backward Euler method approximates the solution y of equation (1) as:{
un+1 = un + h f(tn+1, un+1) n = 0, . . . , Nh − 1,
u0 = y0.

Since un+1 appears on both sides of the previous relation, the method is implicit and requires
the solution of the nonlinear equation

FBE
n (un+1) := un+1 − un − h f(tn+1, un+1) = 0 for all n = 0, . . . , Nh − 1,

at each time step tn with n = 0, . . . , Nh − 1. For the model problem (2) this equation is of
the form

FBE
n (un+1) := un+1 − un − λhun+1 = 0 for all n = 0, . . . , Nh − 1,

whose solution is un+1 =
un

(1−λh) for n = 0, . . . , Nh − 1.

Thus, the MATLAB implementation reads:

�
function [tv, uv] = backward euler modelproblem(lambda, y0, t0, tf, Nh)
% BACKWARD EULER MODELPROBLEM Backward Euler method for the model problem
% ODE in the form
% y'(t) = lambda y(t), t \in (t0,tf)
% y(0) = y 0
%
% [tv, uv] = backward euler modelproblem(lambda, y0, t0, tf, Nh)
% Inputs: lambda = real parameter (negative)
% y0 = initial value
% t0 = initial time
% tf = final time
% Nh = number of time subintervals
% Output: tv = vector of time steps (1 x (Nh+1))
% uv = vector of approximate solution at times tv
%

tv = linspace(t0, tf, Nh + 1);
h = (tf − t0) / Nh;

uv = zeros(1, Nh + 1);
uv(1) = y0;

for n = 1 : Nh
uv(n + 1) = uv(n) / (1 − h * lambda);

end

return� �
The Crank-Nicolson method reads:{

un+1 = un + h
2 [f(tn, un) + f(tn+1, un+1)] n = 0, . . . , Nh − 1,

u0 = y0.

The nonlinear equation to be solved at each time tn, with n = 0, . . . , Nh − 1, is

FCN
n (un+1) := un+1 − un − h

2
[f(tn, un) + f(tn+1, un+1)] = 0 for all n = 0, . . . , Nh − 1,

4

which, in the case of the model problem (2), simplifies to

FCN
n (un+1) = un+1 − un − λh

2
[un + un+1] = 0 for all n = 0, . . . , Nh − 1.

The solution is then un+1 =
1+λh/2
1−λh/2 un for all n = 0, . . . , Nh − 1.

We consider the following MATLAB implementation:

�
function [tv, uv] = crank nicolson modelproblem(lambda, y0, t0, tf, Nh)
% CRANK NICOLSON MODELPROBLEM Crank−Nicolson method for the model problem
% ODE in the form
% y'(t) = lambda y(t), t \in (t0,tf)
% y(0) = y 0
%
% [tv, uv] = crank nicolson modelproblem(lambda, y0, t0, tf, Nh)
% Inputs: lambda = real parameter (negative)
% y0 = initial value
% t0 = initial time
% tf = final time
% Nh = number of time subintervals
% Output: tv = vector of time steps (1 x (Nh+1))
% uv = vector of approximate solution at times tv
%

tv = linspace(t0, tf, Nh + 1);
h = (tf − t0) / Nh;

uv = zeros(1, Nh + 1);
uv(1) = y0;

alpha = h * lambda / 2;

for n = 1 : Nh
uv(n + 1) = uv(n) * (1 + alpha) / (1 − alpha);

end

return� �
e) We consider the following MATLAB commands:

�
[tv, uv backward euler] = backward euler modelproblem(lambda, ...

y0, t0, tf, Nh);
[tv, uv crank nicolson] = crank nicolson modelproblem(lambda, ...

y0, t0, tf, Nh);
figure
plot(tv plot, y ex(tv plot), '−k', ...

tv, uv backward euler, '−dg', tv, uv crank nicolson, '−sm');
grid on; xlabel('t'); ylabel('y');
legend(' y {ex}(t)',' u {n}, B.E.',' u {n}, C.−N.');� �
We observe in Fig. 2 that the numerical approximation given by the Crank-Nicolson method
is quite accurate. It is important to understand that even between two methods of the same
order of accuracy (convergence order), such as the Heun and the Crank-Nicolson methods,
which are both accurate of order 2 for y(t) ∈ C3(I), there can be noticeable differences in the
quality of the approximate solutions.

5

0 5 10 15

0

0.2

0.4

0.6

0.8

1

t

y

Model problem, Backward Euler and Crank−Nicolson methods

 y

ex
(t)

 u
n
, B.E.

 u
n
, C.−N.

Figure 2: Numerical approximations of the model problem (2) with f(t, y) = λ y and λ = −0.5 by
the backward Euler and Crank-Nicolson methods.

f) If, for a general method, the error en := |yn − un| at the discrete time tn with n = 0, . . . , Nh

is bounded as:
en ≤ Chp for n = 0, . . . , Nh,

when the time step h is “sufficiently“ small (h → 0), we say that the method is convergent of
order p. Next we shall study the convergence of the four aforementioned methods as h → 0
on the model problem (2) for which y(t) ∈ C∞(I).

Note that, in order to evaluate the errors en at time t = 10, the number of subintervals
Nh = |I| /h must be chosen such that (t− t0)/h ∈ N. For the values used, this implies that we
must choose Nh such that 10Nh/15 ∈ N, and so we choose Nh = 15, 30, 45, 60, 120, 240, 480.

The MATLAB code to compute the four different approximations for different values of Nh

and to plot the convergence graph in Fig. 3 is as follows:

�
errv n forward euler = [];
errv n backward euler = [];
errv n heun = [];
errv n crank nicolson = [];
Nhv = [15 30 60 120 240 480];
hv = (tf − t0) ./ Nhv;
t bar = 10;
for Nh = Nhv

h = (tf − t0) / Nh; % h
n = (t bar − t0) / h; % step n varies with Nh
[tv, uv forward euler] = forward euler(fun, y0, t0, tf, Nh);
[tv, uv heun] = heun(fun, y0, t0, tf, Nh);
[tv, uv backward euler] = backward euler modelproblem(lambda, ...

y0, t0, tf, Nh);
[tv, uv crank nicolson] = crank nicolson modelproblem(lambda, ...

y0, t0, tf, Nh);
errv n forward euler = [errv n forward euler, ...

abs(uv forward euler(n + 1) − y ex(t bar))];
errv n heun = [errv n heun, ...

abs(uv heun(n + 1) − y ex(t bar))];

6

10
−1

10
0

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

h

e n

Model problem, Errors F.E., B.E., H., C.−N. methods

 e
n
, F.E.

 u
n
, Heun

 e
n
, B.E.

 e
n
, C.−N.

 h

 h
2

Figure 3: Comparison of the order of convergence of the different methods for the model problem (2).

errv n backward euler = [errv n backward euler, ...
abs(uv backward euler(n + 1) − y ex(t bar))];

errv n crank nicolson = [errv n crank nicolson, ...
abs(uv crank nicolson(n + 1) − y ex(t bar))];

end
figure
loglog(hv, errv n forward euler, '−xb', ...

hv, errv n heun, '−or', ...
hv, errv n backward euler, '−dg', ...
hv, errv n crank nicolson, '−sm', ...
hv, 1.5 * errv n backward euler(1) / hv(1) * hv, '−−k',...
hv, 1.5 * errv n heun(1) / hv(1)ˆ2 * hv.ˆ2, '−−k');

grid on; xlabel('h'); ylabel('e n');
legend(' e {n}, F.E.',' u {n}, Heun', ' e {n}, B.E.',' e {n}, C.−N.', ...

' h', ' hˆ2');� �
From the convergence plot in Fig. 3, we verify that the forward Euler and backward Euler
methods converge with order 1. The Heun and Crank-Nicolson methods converge with order
2.

g) A method for the model problem y′(t) = λ y(t) with λ < 0 is called absolutely stable (on
unbounded intervals) for a given λh if the discrete sequence un is such that:

lim
n→∞

un = 0.

In general, a linear one-step method applied to the model problem (2) on the unbounded
interval (t0,+∞) will produce a sequence in the form un+1 = R(λh)un for n ≥ 0, where
the stability function R is a polynomial if the method is explicit or a rational function if the
method is implicit. It follows that un = R(λh)n u0 for n ≥ 0. The region of absolute stability
is then defined as:

A := {z = λh ∈ C : |R(λh)| < 1} .

The stability functions R(λh) and the conditions for absolute stability of the four methods
considered are:

7

Method R(λh) Region of absolute stability (on R−)

Forward Euler 1 + λh 0 < h < hmax =
2

|λ|

Backward Euler
1

1− λh
unconditional (h > 0)

Heun 1 + λh+
(λh)2

2
0 < h < hmax =

2

|λ|

Crank-Nicolson
1 + λh/2

1− λh/2
unconditional (h > 0)

Table 1: Absolute stability regions of different numerical methods.

We apply the four numerical methods to the model problem (2) with λ = −0.5, tf = 40,
and t0 = 0. We observe that, when Nh = 9, we have |λ| h ≃ 2.2, when Nh = 10, we have
|λ| h = 2, and, when Nh = 11, we have |λ|h ≃ 1.8. Therefore, we expect the two explicit
methods (forward Euler and Heun methods) to be unstable for Nh = 9, marginally but not
absolutely stable for Nh = 10, and absolutely stable for Nh = 11.

This prediction is verified by the left column of Fig. 4. If Nh = 10 the explicit methods are
not absolutely stable, but the approximations remain bounded. For Nh = 11 both the forward
Euler and Heun methods are absolutely stable, but the forward Euler oscillates greatly and
the approximation is very poor.

From the right column of Fig. 4 we can observe that both the implicit methods (backward Euler
and Crank-Nicolson) are absolutely stable for all the values of Nh, as expected. Nevertheless,
we observe that for h large (Nh small) the approximation given by the Crank-Nicolson method
displays some initial oscillation1.

Exercise II (MATLAB)

a) As mentioned previously (Exercise 1, point d)), the backward Euler method requires the
solution of the nonlinear equation:

FBE
n (un+1) := un+1 − un − hf(tn+1, un+1) = 0 for all n = 0, . . . , Nh − 1.

To apply the Newton’s method to its solution, we note that:

(FBE
n)′(un+1) := 1− h

∂f

∂y
(tn+1, un+1) for all n = 0, . . . , Nh − 1,

and so we can write the Newton method for all n = 0, . . . , Nh − 1 as: u
(k+1)
n+1 = u

(k)
n+1 −

FBE
n (u

(k)
n+1)

(FBE
n)′(u

(k)
n+1)

k ≥ 0,

u
(0)
n+1 = un,

1This is due to the fact that for the Crank-Nicolson method the stability function R(λh) satisfies
lim|λh|→∞ |R(λh)| = 1. So, if λ ≪ 0 or the step size h is very large, the Crank-Nicolson method starts to ex-
hibit some oscillations. The drawback of this method is that it contains insufficient damping for oscillations that may
arise due to the presence of very fast transients in the solutions.

8

0 5 10 15 20 25 30 35 40
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

t

y

Model problem, Forward Euler and Heun methods

 y

ex
(t)

 u
n
, F.E.

 u
n
, Heun

0 5 10 15 20 25 30 35 40

0

0.2

0.4

0.6

0.8

1

t

y

Model problem, Backward Euler and Crank−Nicolson methods

 y

ex
(t)

 u
n
, B.E.

 u
n
, C.−N.

Nh = 9 Nh = 9

0 5 10 15 20 25 30 35 40
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

t

y

Model problem, Forward Euler and Heun methods

 y

ex
(t)

 u
n
, F.E.

 u
n
, Heun

0 5 10 15 20 25 30 35 40

0

0.2

0.4

0.6

0.8

1

t

y

Model problem, Backward Euler and Crank−Nicolson methods

 y

ex
(t)

 u
n
, B.E.

 u
n
, C.−N.

Nh = 10 Nh = 10

0 5 10 15 20 25 30 35 40
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

t

y

Model problem, Forward Euler and Heun methods

 y

ex
(t)

 u
n
, F.E.

 u
n
, Heun

0 5 10 15 20 25 30 35 40

0

0.2

0.4

0.6

0.8

1

t

y

Model problem, Backward Euler and Crank−Nicolson methods

 y

ex
(t)

 u
n
, B.E.

 u
n
, C.−N.

Nh = 11 Nh = 11

Figure 4: Left column: behavior of the explicit methods (forward Euler and Heun) for Nh = 9
(top), Nh = 10 (middle), and Nh = 11 (bottom). Right column: behavior of the implicit methods
(backward Euler and Crank-Nicolson) for Nh = 9 (top), Nh = 10 (middle), and Nh = 11 (bottom).

9

using as initial guess the solution un at the previous time step. The solution at the discrete

time tn+1 is set to un+1 = u
(k+1)
n+1 for k “sufficiently” large according to some stopping criterion.

Then, the MATLAB implementation of the backward Euler method is:

�
function [tv, uv] = backward euler(fun, dfun y, y0, t0, tf, Nh)
% BACKWARD EULER Backward Euler method for the scalar ODE in the form
% y'(t) = f(t,y(t)), t \in (t0,tf)
% y(0) = y 0
%
% The Newton method is used to solve the nonlinear equation at each time
% step. The function newton.m is used.
%
% [tv, uv] = backward euler(fun, dfun y, y0, t0, tf, Nh)
% Inputs: fun = function handle for f(t,y), fun = @(t,y) ...
% dfun y = derivative of f(t,y) w.r.t. y, dfun y = @(t,y) ...
% y0 = initial value
% t0 = initial time
% tf = final time
% Nh = number of time subintervals
% Output: tv = vector of time steps (1 x (Nh+1))
% uv = vector of approximate solution at times tv
%

tv = linspace(t0, tf, Nh + 1);
h = (tf − t0) / Nh;

uv = zeros(1, Nh + 1);
uv(1) = y0;

for n = 1 : Nh
f = @(x) x − uv(n) − h * fun(tv(n + 1), x);
df = @(x) 1 − h * dfun y(tv(n + 1), x);
[xv, res, niter] = newton(f, df, uv(n), 1e−10, 20);
uv(n + 1) = xv(end);

end

return� �
b) We obtain the results reported in Fig. 5 by using the following MATLAB commands:

�
alpha = pi/2; beta = pi/3;
fun = @(t, y) alpha * y * (1 − 1 / beta * y);
dfun y = @(t, y) alpha * (1 − 2 / beta * y);
t0 = 0; tf = 20; y0 = 0.4;
Nh = 20;
[tv, uv forward euler] = forward euler(fun, y0, t0, tf, Nh);
[tv, uv backward euler] = backward euler(fun, dfun y, y0, t0, tf, Nh);
tv plot = linspace(t0, tf, 1001);
y ex = @(t) beta * exp(alpha * (t − t0) + log(y0 / (beta − y0))) ./ ...

(1 + exp(alpha * (t − t0) + log(y0 / (beta − y0))));
figure
plot(tv plot, y ex(tv plot), '−k', ...

tv, uv forward euler, '−xb', ...
tv, uv backward euler, '−sr');

grid on; xlabel('t'); ylabel('y');
legend(' y {ex}(t)',' u {n}, F.E.', ' u {n}, B.E.');

10

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

t

y

ODE, Forward Euler and Backward methods

 y
ex

(t)

 u
n
, F.E.

 u
n
, B.E.

Figure 5: Numerical approximations by the forward and backward Euler methods for y′ =

αy
(
1− y

β

)
.

� �
It can be seen that both the numerical approximations obtained with the forward and back-
ward Euler methods for Nh = 20 are (absolutely) stable in the sense that they converge to
the asymptotic limit value, limt→∞ y(t) = β = π/3; however, the approximation given by the
explicit forward Euler method exhibits some oscillations and is thus a poor approximation of
the exact solution.

c) Let dfmax = supt>t0

∣∣∣∂f∂y (t, y(t))∣∣∣. For the problem under consideration, we know that y(t) ∈

[y0, β] for t ≥ 0 when β > y0 > 0. Since ∂f
∂y (y) = α

(
1− 2

β y
)
, y0 = 0.4, β = π

3 , and

α = π
2 , we deduce that dfmax = α. It follows that hmax = 4

π ≃ 1.2732. Hence, at least
|I| /hmax = 5π ≈ 15.7080 subintervals must be used to guarantee absolute stability. The
following MATLAB commands can be considered to obtain the same results:

�
y = linspace(y0, beta, 1001);
df val = alpha * (1 − 2 / beta * y);
df max = max(abs(df val))
% df max =
% 1.5708
h max = 2 / df max
% h max =
% 1.2732
Nh max = ceil((tf − t0) / h max)
% Nh max =
% 16� �

d) In Fig. 6 we display the numerical solutions obtained with the forward and backward Euler
methods for Nh = 15 (left) and Nh = 16 (right). It can be seen that in the first case the
approximation given by the forward Euler method is unstable (h > hmax). In the second case
(h < hmax), the solution obtained with the forward Euler method is (absolutely) stable. In

11

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

t

y

ODE, Forward Euler and Backward methods

 y
ex

(t)

 u
n
, F.E.

 u
n
, B.E.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

t

y

ODE, Forward Euler and Backward methods

 y
ex

(t)

 u
n
, F.E.

 u
n
, B.E.

Nh = 15 Nh = 16

Figure 6: Numerical approximations by the forward and backward Euler methods for y′ =

αy
(
1− y

β

)
.

both cases, the approximation given by the explicit forward Euler method oscillates, since,
after all, (absolute) stability is not a guarantee of accuracy. On the other hand, we verify that
the backward Euler method is, as expected, absolutely stable for all Nh ̸= 1 (h > 0).

The following MATLAB commands can be used to obtain the results in Fig. 6:

�
Nh = 15; % unstable
[tv, uv forward euler] = forward euler(fun, y0, t0, tf, Nh);
[tv, uv backward euler] = backward euler(fun, dfun y, y0, t0, tf, Nh);
tv plot = linspace(t0, tf, 1001);
y ex = @(t) beta * exp(alpha * (t − t0) + log(y0 / (beta − y0))) ./ ...

(1 + exp(alpha * (t − t0) + log(y0 / (beta − y0))));
figure
plot(tv plot, y ex(tv plot), '−k', ...

tv, uv forward euler, '−xb', ...
tv, uv backward euler, '−sr');

grid on; xlabel('t'); ylabel('y');
legend(' y {ex}(t)',' u {n}, F.E.', ' u {n}, B.E.');� �

12

