=PrL

Numerical Analysis and Computational Mathematics
Fall Semester 2024 — CSE Section
Prof. Laura Grigori

Assistant: Israa Fakih

Session 12 — December 4, 2024

Solutions — Ordinary differential equations

Solution I (MATLAB)

a) The forward Euler method approximates the solution y(t) of equation (1) as:

{un+1:un+hf(tn,un) n=20,...,Np —1,
Uo = Yo-

Since the approximate solution u,1 at the discrete time t,; appears only on the left-hand
side of the first relation, the method is explicit and does not require the solution of any
equations. The MATLAB implementation is straightforward and reads:

function [tv, uv] = forward.euler(fun, y0, tO0, tf, Nh)

% FORWARD_EULER Forward Euler method for the scalar ODE in the form
$ y'(t) = £(t,y(t)), t \in (t0,tf)

% y(0) = y-0

% [tv, uv] = forward_euler(fun, y0, t0, tf, Nh)

% Inputs: fun = function handle for f(t,y), fun = Q@(t,vy)

% vO = initial value

% t0 = initial time

% tf = final time

% Nh = number of time subintervals

% Output: tv = vector of time steps (1 x (Nh+1))

% uv = vector of approximate solution at times tv

o\

tv = linspace(t0, tf, Nh + 1);
h = (tf - t0) / Nh;

uv = zeros(1, Nh + 1);
uv(1) = y0;

for n = 1 : Nh
uv(n + 1) =uv(n) + h * fun(tv(n), uv(n));
end

return

The Heun method is:

{ u'rL+1 = Up + % [f(tnaun) + f(tn+17un + hf(tnaun))] n = 07 .. 'aNh - 17
uo = Yo,

or equivalently:

u;kz+1:un+hf(tn7un) n=0,...,Np,—1,
Un+1 = Un+% [f(tnyun) +f(tn+1au:;+1)] n= Oa" 'aNh - 17
Uo = Yo-

The Heun method is explicit and does not require the solution of any equations; the Heun
method possesses order of accuracy 2 for solutions y(t) € C3(I) (convergence order 2). The
MATLAB implementation follows:

function [tv, uv] = heun(fun, y0, t0, tf, Nh)
HEUN Heun method for the scalar ODE in the form

o°

$ y'(t) = £(t,y(t)), t \in (t0,tf)

% y(0) = y-0

% [tv, uv] = heun(fun, y0, t0, tf, Nh)

% Inputs: fun = function handle for f(t,y), fun = Q@(t,y)

% v0 = initial value

% t0 = initial time

% tf = final time

% Nh = number of time subintervals

% Output: tv = vector of time steps (1 x (Nh+1l))

% uv = vector of approximate solution at times tv

o

tv = linspace(t0, tf, Nh + 1);
h = (tf - t0) / Nh;

uv = zeros(1, Nh + 1);
uv(1) = y0;

for n = 1 : Nh

u.star = uv(n) + h x fun(tv(n), uv(n));
uww(n+1) =uv(n) +h/ 2 % (fun(tv(n), uv(n)) +
fun(tv(n + 1), u.star));
end
return

The following MATLAB commands allow computing the approximated solutions of y(¢) by the
forward Euler and the Heun methods implemented at point a) and to plot them in Fig. 1(left).

yO = (exp(1) -1) / (exp(1) +1);

Cauchy problem, Forward Euler and Heun methods Model problem, Forward Euler and Heun methods

—_ 0
¢ u, FE.
e u, Heun

— O
oS¢ Uy FE.
e u, Heun

= i i i ; 7
0 1 2 3 4 5

021

Figure 1: Numerical approximations of y(t) by the forward Euler and Heun methods for f(t,y) =
1 — 2 (left) and for the model problem (2) with f(t,y) = —y/2 (right).

[tv, uv_-forward_euler] = forward.euler(fun, y0, t0, tf, Nh);
[tv, uv-heun] = heun(fun, y0, t0, tf, Nh);
tv_plot = linspace(t0, tf, 1001);
yex = Q@Q(t) (exp(2+t +1)—-1) ./ (exp(2t +1) +1);
figure
plot (tv_plot, y-ex(tv_plot), '-k', .
tv, uv_forward_euler, '-xb', tv, uv_heun, '-or');
grid on; xlabel ('t'); ylabel('y');
legend (' y-{ex}(t)'," u-{n}, F.E.'," u_{n}, Heun');

Qualitatively, the numerical solutions approximate well the exact solution y(t) for Ny = 10.

c) The model problem (2) defined on the interval I = (to,ts) has y(t) = exp(—t/2) as exact
solution. The following MATLAB code computes the numerical approximations of y(t) by the
forward Euler and the Heun methods. See Fig. 1 (right).

lambda = - 0.5;

fun = @(t, y) lambda x y;

t0 = 0; tf = 15;

yo = 1;

Nh = 10;

[tv, uv_-forward.euler] = forward.euler(fun, y0, t0O, tf, Nh);
[tv, uv_-heun] = heun(fun, y0, t0, tf, Nh);

tv_plot = linspace(t0, tf, 1001);
yex = @(t) yv0O » exp(lambda » t);

figure
plot (tv-plot, y-ex(tv_plot), '-k', .

tv, uv_-forward.euler, '-xb', tv, uv_heun, '-or');
grid on

xlabel ('t");
ylabel ('y');
legend (' y_{ex}(t)'," u-{n}, F.E.','" u_{n}, Heun');

J

Again, qualitatively, the numerical solutions approximate well the exact solution y(t¢) for
Ny = 10.

The backward Euler method approximates the solution y of equation (1) as:

{ un+1:un+hf<tn+17un+l) n=20,...,Np—1,
uo = Yo-

Since uy 1 appears on both sides of the previous relation, the method is implicit and requires
the solution of the nonlinear equation

FBE (1) = tng1 — tn — h f(tny1, Ung1) =0 foralln =0,..., N, — 1,

at each time step ¢, with n = 0,..., N, — 1. For the model problem (2) this equation is of
the form

FBE (1) = tng1 — tn — Aty =0 foralln=0,..., N, — 1,
whose solution is up4+1 = ﬁ forn=0,...,N,—1.

Thus, the MATLAB implementation reads:

function [tv, uv] = backward_euler_modelproblem(lambda, y0, tO, tf, Nh)
BACKWARD_EULER_MODELPROBLEM Backward Euler method for the model problem
ODE in the form

$ y'(t) = lambda y(t), t \in (t0,tf)

% y(0) = y-0

% [tv, uv] = backward_euler_modelproblem(lambda, yO0, t0, tf, Nh)
% Inputs: lambda = real parameter (negative)

% yvO0 = initial value

% t0 = initial time

% tf = final time

% Nh = number of time subintervals

% Output: tv = vector of time steps (1 x (Nh+1))

% uv = vector of approximate solution at times tv

tv = linspace(t0, tf, Nh + 1);
h = (tf - t0) / Nh;

uv = zeros(1, Nh + 1);

uv(1) = y0;
for n = 1 : Nh
uwwv(n+1) =uv(n) / (1 - h x lambda);
end
return

The Crank-Nicolson method reads:

{ Up41 = Up + % Lf (tn, un) + f(tny1, unt1)] n=0,...,Np—1,
Uo = Yo-

The nonlinear equation to be solved at each time t,, with n =0,..., N, — 1, is

h
FEN(unH) = Ungl — Un — 5 [f (tnyun) + f(tns1,unst1)] =0 foralln=0,...,N, —1,

which, in the case of the model problem (2), simplifies to

FSN(unH) = Unt1 = Un ~ [t + Upt1] =0 foralln=20,...,N, — 1.
The solution is then u,4+1 = % uy for alln =0,..., N, — 1.

We consider the following MATLAB implementation:

function [tv, uv] = crank.nicolson.modelproblem(lambda, yO0, t0O, tf, Nh)
CRANK_NICOLSON_MODELPROBLEM Crank-Nicolson method for the model problem
ODE in the form

$ y'(t) = lambda y(t), t \in (tO0,tf)

5 y(0) = y-0

% [tv, uv] = crank.nicolson_.modelproblem(lambda, y0, tO, tf, Nh)
% Inputs: lambda = real parameter (negative)

% v0 = initial value

% t0 = initial time

% tf = final time

% Nh = number of time subintervals

% Output: tv = vector of time steps (1 x (Nh+1l))

% uv = vector of approximate solution at times tv

tv = linspace(t0, tf, Nh + 1);
h = (tf - t0) / Nh;

uv = zeros(1, Nh + 1);
uv(1) = y0;

alpha = h » lambda / 2;

for n = 1 : Nh
uv(n+ 1) =uv(n) x (1 + alpha) / (1 - alpha);
end

return

We consider the following MATLAB commands:

[tv, uv_backward_euler] backward_euler_modelproblem(lambda,
y0, t0, tf, Nh);
[tv, uv_crank-nicolson] = crank.nicolson_modelproblem(lambda,

y0, t0, tf, Nh);

figure
plot (tv_plot, y-ex(tv_plot), '-k',
tv, uv_backward.euler, '-dg', tv, uv._.crank.nicolson, '-sm') ;
grid on; xlabel ('t'); ylabel('y');
legend (' y-{ex}(t)',"' u-{n}, B.E.'," u_{n}, C.-N.');

We observe in Fig. 2 that the numerical approximation given by the Crank-Nicolson method
is quite accurate. It is important to understand that even between two methods of the same
order of accuracy (convergence order), such as the Heun and the Crank-Nicolson methods,
which are both accurate of order 2 for y(t) € C3(I), there can be noticeable differences in the
quality of the approximate solutions.

Model problem, Backward Euler and Crank—Nicolson methods

—_ Y,

u,BE. ||
\ E u, C.-N|
0.8} \ g
0.6
-
041
0.2f
of £l

Figure 2: Numerical approximations of the model problem (2) with f(¢,y) = A y and A = —0.5 by
the backward Euler and Crank-Nicolson methods.

f) If, for a general method, the error e, := |y, — u,| at the discrete time ¢, with n =0,..., N,

is bounded as:
en < Ch? for n=0,..., Ny,

when the time step h is “sufficiently “ small (h — 0), we say that the method is convergent of
order p. Next we shall study the convergence of the four aforementioned methods as h — 0
on the model problem (2) for which y(t) € C*°(I).

Note that, in order to evaluate the errors e, at time ¢ = 10, the number of subintervals
N}, = |I| /h must be chosen such that (f —tg)/h € N. For the values used, this implies that we
must choose Nj, such that 10 N5 /15 € N, and so we choose N, = 15,30, 45, 60, 120, 240, 480.

The MATLAB code to compute the four different approximations for different values of Ny,
and to plot the convergence graph in Fig. 3 is as follows:

errv_.n_forward_euler = [];
errv_n_backward_euler = [];
errv_n_heun = [];
errv_n_crank_nicolson = [];
Nhv = [15 30 60 120 240 480 1];
hv = (tf - t0) ./ Nhv;

t_bar = 10;

for Nh = Nhv

h = (tf - t0) / Nh; % h
n= (tbar - t0) / h; % step n varies with Nh
[tv, uv_forward_-euler] = forward-euler(fun, y0, t0, tf, Nh);
[tv, uv.heun] = heun(fun, y0, t0, tf, Nh);
[tv, uv_backward_euler] = backward_euler_modelproblem(lambda, ...
y0, t0, tf, Nh);
[tv, uv_crank_nicolson] = crank.nicolson_.modelproblem(lambda, ...
y0, t0, tf, Nh);
errv_.n_forward_euler = [errv.n_forward_euler,
abs(uv_forward.euler(n + 1) - y_ex(tbar)) 1;
errv_n_heun = [errv_n_heun,
abs(uvcheun(n + 1) - y-ex(t-bar)) 1;

Model problem, Errors F.E., B.E., H., C.—N. methods

: 33— € FE.

u, Heun |4

e ,B.E.

n

e ,C-N.
—E— n i
===h

---n

2

10°

Figure 3: Comparison of the order of convergence of the different methods for the model problem (2).

errv_.n_backward_euler = [errv_n_backward_euler,
abs (uv_backward.euler(n + 1) - y_ex(t.bar)) 1;
errv_n_crank_nicolson = [errv_n_crank_nicolson,
abs(uv_.crank.nicolson(n + 1) - y_ex(t.bar)) 1;
end
figure
loglog(hv, errv.n_forward.euler, '-xb',
hv, errv_n_heun, '-or',
hv, errv_n_backward_euler, '-dg',
hv, errv_n_crank_nicolson, '-sm',
hv, 1.5 * errv_n_.backward.euler(1) / hv(1) %= hv, '—-k',...
hv, 1.5 x errv_on.heun(1) / hv(1)72 % hv."2, '—-—k');

grid on; xlabel('h'); ylabel('e.n');
legend(' e_{n}, F.E.',' u_{n}, Heun', ' e {n}, B.E.",' e {n}, C.-N."',
"'h', " h"2'");

J

From the convergence plot in Fig. 3, we verify that the forward Euler and backward Euler
methods converge with order 1. The Heun and Crank-Nicolson methods converge with order
2.

A method for the model problem y'(t) = Ay(t) with A < 0 is called absolutely stable (on
unbounded intervals) for a given A h if the discrete sequence u,, is such that:

lim u, = 0.

n—oo
In general, a linear one-step method applied to the model problem (2) on the unbounded
interval (tg,+00) will produce a sequence in the form u,11 = R(Ah)u, for n > 0, where
the stability function R is a polynomial if the method is explicit or a rational function if the
method is implicit. It follows that u, = R(Ah)™ ug for n > 0. The region of absolute stability

is then defined as:
A:={z=AheC : |R(\h)| <1}.

The stability functions R(Ah) and the conditions for absolute stability of the four methods
considered are:

Method R(A\h) Region of absolute stability (on R™)

2

Forward Euler 1+ Ah 0<h < hpmae = W
1
Backward Euler T unconditional (h > 0)
2

2

Heun 1+)\h+()\g) O<h<hmax:m
1 2

Crank-Nicolson % unconditional (h > 0)

Table 1: Absolute stability regions of different numerical methods.

We apply the four numerical methods to the model problem (2) with A\ = —0.5, t; = 40,
and tgp = 0. We observe that, when N = 9, we have |[A\| h ~ 2.2, when N;, = 10, we have
IA\| h = 2, and, when Nj, = 11, we have |A|h ~ 1.8. Therefore, we expect the two explicit
methods (forward Euler and Heun methods) to be unstable for N;, = 9, marginally but not
absolutely stable for N = 10, and absolutely stable for N, = 11.

This prediction is verified by the left column of Fig. 4. If Nj = 10 the explicit methods are
not absolutely stable, but the approximations remain bounded. For Nj, = 11 both the forward
Euler and Heun methods are absolutely stable, but the forward Euler oscillates greatly and
the approximation is very poor.

From the right column of Fig. 4 we can observe that both the implicit methods (backward Euler
and Crank-Nicolson) are absolutely stable for all the values of Ny, as expected. Nevertheless,
we observe that for h large (N}, small) the approximation given by the Crank-Nicolson method
displays some initial oscillation®.

Exercise II (MATLAB)

a) As mentioned previously (Exercise 1, point d)), the backward Euler method requires the
solution of the nonlinear equation:

F}?E(unﬂ) = Upt1 — Up — hf(tnt1,Uns1) =0 foralln=0,...,N, — 1.

To apply the Newton’s method to its solution, we note that:

(FBEY (U pq) =1 — hg;(tn+17un+1) foralln=0,..., N, —1,

n

and so we can write the Newton method for all n =0,..., Ny — 1 as:
FBE (,,(F)
uglkjll) _ Ug?l _ By k>0,

o (FBEY (u{))

unJrl = Un,

'This is due to the fact that for the Crank-Nicolson method the stability function R(Ah) satisfies
limx pmoo [R(AR)| = 1. So, if A < 0 or the step size h is very large, the Crank-Nicolson method starts to ex-
hibit some oscillations. The drawback of this method is that it contains insufficient damping for oscillations that may
arise due to the presence of very fast transients in the solutions.

Model problem, Forward Euler and Heun methods Model problem, Backward Euler and Crank—Nicolson methods
3 T T T T T T T

Y r T T T T T T
— c N0
3 YUy FE. [] u,BE.
e u, Heun| /| E u, C.-N.
) I I I I I I
0 5 10 15 20 25 30 35 40
t t
N, =9 Np=9
Model problem, Forward Euler and Heun methods Model problem, Backward Euler and Crank—Nicolson methods
3 T T T T T T T r T T T T T T T
—_ Y, c)
251 —¢ . FE] u,BE.
oL _e_ u, Heun|] L E u, C.-N.
L5F 7

> 05
-1 N
-1.5F : 1
) i i i i i i i i i i i i i i
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
t t
Np =10 Ny =10
Model problem, Forward Euler and Heun methods Model problem, Backward Euler and Crank—Nicolson methods
3 T T T T T T T r T T T T T T T
—_ Y, c —_

251 —3¢ U, FE] u,BE.

oL _e_ u, Heun|] \ E u, C.-N.

Figure 4: Left column: behavior of the explicit methods (forward Euler and Heun) for N, = 9
(top), N = 10 (middle), and N = 11 (bottom). Right column: behavior of the implicit methods
(backward Euler and Crank-Nicolson) for Nj, =9 (top), N = 10 (middle), and Nj = 11 (bottom).

using as initial guess the solution u,, at the previous time step. The solution at the discrete
time ¢,,41 is set to up+1 = ugi:rll) for k “sufficiently” large according to some stopping criterion.

Then, the MATLAB implementation of the backward Euler method is:

function [tv, uv] = backward.euler(fun, dfun.y, y0, tO0, tf, Nh)
BACKWARD_EULER Backward Euler method for the scalar ODE in the form
y'(t) = £(t,y(t)), t \in (tO0,tf)
y(0) = y-0

The Newton method is used to solve the nonlinear equation at each time
step. The function newton.m is used.

[tv, uv] = backward.euler(fun, dfun.y, y0, t0, tf, Nh)
Inputs: fun = function handle for f(t,y), fun = @Q(t,vy)
dfun.y = derivative of f(t,y) w.r.t. y, dfun.y = Q(t,vy)
vO0 = initial value
t0 = initial time
tf = final time
Nh = number of time subintervals
Output: tv = vector of time steps (1 x (Nh+1))
uv = vector of approximate solution at times twv

o0 o° o° o d° O A° A O° A o° o° o J° o° o° oP

tv = linspace(t0, tf, Nh + 1);
h = (tf - t0) / Nh;

uv = zeros(1, Nh + 1);
uv(1) = y0;

for n = 1 : Nh

f=0Q@(x) x-—uv(n) —-—h* fun(tv(n + 1), x);
df = @(x) 1 - h » dfun.y(tv(n + 1), x);
[xv, res, niter] = newton(£, df, uv(n), 1le-10, 20);
uv(n + 1) = xv(end);
end
return

We obtain the results reported in Fig. 5 by using the following MATLAB commands:

alpha = pi/2; Dbeta = pi/3;
fun = @(t, v) alpha x vy » (1 — 1 / beta vy);
dfun.y = Q(t, y) alpha = (1 — 2 / beta » y);
t0 = 0; tf = 20; vyO0 = 0.4;

Nh = 20;
[tv, uv_-forward_euler] = forward.euler(fun, y0, t0, tf, Nh);
[tv, uv-backward.-euler] = backward-euler(fun, dfun.y, y0, t0, tf, Nh);
tv_plot = linspace(t0, tf, 1001);
y.ex = @(t) beta x exp(alpha = (t - t0) + log(y0O / (beta - y0))) ./
(1 + exp(alpha » (t — t0) + log(y0 / (beta — y0))));
figure
plot (tv_plot, y.ex(tv_plot), '-k',
tv, uv_forward.euler, '—-xb',
tv, uv.backward_euler, '-sr');
grid on; xlabel('t'); vylabel('yv');
legend (' y-{ex}(t)'," u-{n}, F.E.', ' u-{n}, B.E.');

10

ODE, Forward Euler and Backward methods

—_y ®

ex

0.2 3¢ U F.E.[
E u, B.E.

Figure 5: Numerical approximations by the forward and backward Euler methods for 3’ =
a (1 — E)
) 3

. J

It can be seen that both the numerical approximations obtained with the forward and back-
ward Euler methods for N = 20 are (absolutely) stable in the sense that they converge to
the asymptotic limit value, lim; o y(t) = 5 = 7/3; however, the approximation given by the
explicit forward Euler method exhibits some oscillations and is thus a poor approximation of
the exact solution.

Let dfimaz = sup;sy, %(t’ y(t))‘ For the problem under consideration, we know that y(t) €

[yo,] for t > 0 when 5 > yo > 0. Since %(y) = a(l—%y), Yo = 04, B = §, and

a = 5, we deduce that dfinee = a. It follows that hpee = % ~ 1.2732. Hence, at least

lI| /hmax = 57 &~ 15.7080 subintervals must be used to guarantee absolute stability. The
following MATLAB commands can be considered to obtain the same results:

y = linspace(y0, beta, 1001);

df val = alpha * (1 - 2 / beta * y);
df _max = max(abs(df_val))

% df_max =

% 1.5708

h.max = 2 / df_max

% h_max =

% 1.2732

Nhmax = ceil((tf - t0) / h_max)
% Nh_max =

% 16

)

In Fig. 6 we display the numerical solutions obtained with the forward and backward Euler
methods for Ny, = 15 (left) and Nj, = 16 (right). It can be seen that in the first case the
approximation given by the forward Euler method is unstable (h > hpae). In the second case
(h < hmag), the solution obtained with the forward Euler method is (absolutely) stable. In

11

ODE, Forward Euler and Backward methods ODE, Forward Euler and Backward methods

N, =15 Np, =16

Figure 6: Numerical approximations by the forward and backward Euler methods for ¢y’ =

ay (1—%).

both cases, the approximation given by the explicit forward Euler method oscillates, since,
after all, (absolute) stability is not a guarantee of accuracy. On the other hand, we verify that
the backward Euler method is, as expected, absolutely stable for all Ny, # 1 (h > 0).

The following MATLAB commands can be used to obtain the results in Fig. 6:

Nh = 15; % unstable
[tv, uv_forward_euler] = forward._euler(fun, y0, t0, tf, Nh);
[tv, uv_-backward_euler] = backward.euler(fun, dfun.y, y0, t0, tf, Nh);
tv_plot = linspace(t0, tf, 1001);
y.ex = @(t) beta x exp(alpha = (t - t0) + log(y0 / (beta - y0))) ./
(1 + exp(alpha = (t - t0) + log(y0O / (beta - y0))));
figure
plot (tv_plot, y.ex(tv_plot), '-k',
tv, uv_forward_.euler, '—-xb',
tv, uv_.backward._euler, '-sr');
grid on; xlabel ('t"); ylabel ('yv');
legend (' y-{ex}(t)'," u-{n}, F.E.', " u_{n}, B.E.');

12

